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ABSTRACT 

A tidal bore is a natural phenomenon usually occur in bays with large tidal waves. Sometimes this large tidal 

inflow are channeled deep into a river. In Indonesia, this natural phenomenon is found in the Kampar River, 

which is known as the tidal bore Bono. Sometimes, these tidal bore phenomena disappear, as happened to the 

Mascaret, tidal bore on the River Seine France. Through an understanding of the formation of tidal bore 

mechanism, there is hope that the tidal bore Bono in Kampar River can be preserved. In this paper, the 

occurrence of tidal bore Bono is simulated using the non-hydrostatic Saint-Venant equation under a staggered 

grid formulation. To test the accuracy of the implementation, several scenarios of hydraulic jumps were 

simulated first. The numerical results have shown to quantitatively confirm the analytical formula of bore 

height and velocity, two parameters that are important to characterize a bore wave. Further, by adopting a 

model that incorporates the non-hydrostatic pressure, our simulation shows the appearance of an undular bore 

accompanying the shock front. Finally, by using tidal current data measured along Kampar River estuary, our 

simulation that employs the actual river topography can show the appearance of tidal bore Bono. Our 

simulations were shown to be in fair agreement with the measurement. 

Keywords: Undular bore; Saint-Venant equations; Non-hydrostatic numerical scheme. 

NOMENCLATURE 

A cross section 

b river width 

c bore velocity 

Fr Froude number 

g acceleration due to gravity 

h water thickness 

n Manning friction coefficient 

q hydrodynamic pressure 

S0 surface pressure 

Sf friction slope 

u horizontal velocity

w vertical velocity

η free surface flow 

ρ fluid density 

1. INTRODUCTION

A tidal bore is a surge wave, generated by a strong 

tide. During a high tide, a large amount of water 

rushes up estuaries and flows further up the rivers, 

against the river current flow. On the river, this tidal 

bore comes out as a surge wave of a sudden change 

in the water surface. In some situations, the 

appearance of a tidal bore is accompanied by an 

undulation, a train of secondary waves near the 

wavefront. Tidal bore on Qiantang River, China is 

considered as the highest, reaching a height of 9 

meters (30 feet). In some other places, such as the 

Turnagain Arm in Alaska, the Amazon River in 

Brazil, and the Severn River in England, tidal bore 

is used for recreation. While the Mascaret is the 

name for a tidal bore in the Seine River, France, 

which is now almost gone, after the dredging of the 

Seine River estuary and the creation of the new 

canal de Tancarville completed in 1963. 

In Indonesia, a tidal bore is found to emerge in 

Kampar River, Riau. In this tidal wave, there are 

seven types of undulations, they are known as the 

seven ghost of Bono. Over the past few years, tidal 

bore Bono has become a tourist destination that 
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attracts tourists, many of them are from abroad, 

who come to surf in the river. It is clear that the 

existence of tidal bore Bono increases the regional 

income, as well as Indonesian tourism in general. 

Therefore, we should maintain the existence of this 

tidal bore; natural resources in the upstream or 

downstream parts of the river should not be 

exploited, to prevent the destruction of tidal bore 

Bono. Finally, the existence of tidal bore Bono 

needs to be maintained, especially because Bono is 

the only tidal bore phenomenon found in Indonesia. 

In this research, we examine the effect of Kampar 

River topography in the occurrence of tidal bore 

Bono. Also, we study the effect of tidal waves that 

collided with the river current resulting in the 

formation of this undular jump. Knowledge of the 

tide, river topography, as well as the river flow, 

would be very helpful to estimate the strength and 

size of this tidal bore, as well as to maintain its 

presence. Here, we study factors that influence the 

occurrence of a tidal bore. Through numerical 

simulations of the Saint-Venant equations 

formulated for rivers with non-constant cross-

sections, we will study the effect of tidal currents 

(amplitude and period), and the magnitude of river 

flow to the size and strength of the tidal bore. 

In this article, we apply the momentum 

conservative scheme for the Saint-Venant 

equation originally proposed by Stelling and 

Duijnmeijer (2003). This scheme is known to 

be a good method for simulating rapidly varied 

flow with a wide range of Froude number. The 

scheme can accurately compute the bore front 

location, which is an important property should 

be fulfilled by a numerical model for tidal bore 

Bono simulation. Further, an undulation that 

accompanies the tidal bore should be computed 

using a non-hydrostatic scheme. Therefore, the 

organization of this paper is arranged as 

follows. In Section 2. we discussed the 

mathematical model and its discrete 

formulation based on the momentum 

conservative staggered grid scheme. In Section 

3., validation of the numerical scheme was 

conducted for various bore scenarios. In 

Section 4., the same set up is used, but now the 

non-hydrostatic scheme was adopted, an 

appearance of an undular bore was then 

simulated. Further, the numerical scheme is 

implemented using the Kampar River 

topography. Our simulation has shown that the 

tidal current data from the sea induced the 

appearance of an undular bore, shown to be in 

fair agreement with the measurement. Finally, 

in Section 5. we draw some conclusions. 

2. THE MATHEMATICAL MODEL 

AND ITS DISCRETE 

FORMULATION 

In general, rivers have a non-homogeneous cross 

section. So that simulation of river surface flow 

would require a heavy 3-dimensional calculation 

that needs large computer memory. Since river flow 

is a nearly one-dimensional problem, a good 

alternative is to apply a 1-dimensional approach in 

which the spatial axis is chosen along the river. As 

noted in Aldrighetti (2007) the proposed river flow 

model is the Saint-Venant equation applicable to 

inclined canals with arbitrary cross-sections. Later, 

the non-homogeneity on the vertical axis is 

accommodated by adopting the hydrodynamic 

pressure term in the model. 

Consider an inclined canal with cross section A, as 

illustrated in Fig. 1. The fluid flow dynamics in the 

channel are governed by the following Saint-Venant 

equations  

  0,t x
A Au                                                  (1a) 

     0
0.

x ft x
Au Auu gA gA S S              (1b) 

 

 

Fig. 1. A sketch of a non-homogeneous canal and 

variable notations. 

 

In the above equations, u(x,t) denotes the horizontal 

velocity of fluid particle. The cross section is A(x,t) 

= b(x) · h(x,t), where b(x) is the river width, and 

h(x,t) the water thickness. An equivalent form of the 

Saint Venant equations are as follows 

     0,
t x

bh bhu                                       (2a) 

        0.bhu t bhuu x gbh x gbhdx gbhSf      

       (2b) 

From Eq.  2a  we obtained a relation 

    
t x

bh bhu  and after taking  0, 2  tb b is 

simplified to yield 

 

  0,t x x

hu
h b hu

b
                                       (3a) 

4

3

0.t x x

gnu u
u uu gh

h

                                (3b) 

Moreover, in the above equation the friction slope is 

approximated using the Manning formula (Vo Thi, 
2008)  

4

3

fS

h


nu|u|  , with n is the Manning friction 

coefficient and for computations here we take 

n=0.001. 

Kim and Lynett (2011) revealed that undular tidal 

bore phenomena need a model that incorporates a 

non-hydrostatic term. Here, we start from the 

following 2D Euler equations 
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4

3

0,x
t x z x

gnu uq
u uu wu gh

h


              (4a) 

0,z
t x z

q
w uw ww


                            

(4b) 

0.x zu w                                            (4c) 

In the above formula  , ,q z x t the hydrodynamic 

pressure, � the fluid density, whereas  , ,w z x t  

denotes the vertical velocities of fluid particles. For 

examining the free surface flow  ,x t , an extra 

equation is obtained from the continuity equation 

which is integrated over the fluid depth 

  0.x zfluid dept
u w dz   

By incorporating the kinematic boundary conditions 

at the surface and along the bottom, we obtain 

  0,t x x

hu
h b hu

b
                                         (5) 

which is indeed the mass conservation equation in 

 3a . 

Under the assumption that surface flow is 

horizontally dominant, the nonlinear terms wux, 

uwx, wwz in  4a  and  4b  are of high order, 

therefore in further discussions they are neglected. 

The resulting model is then 

  0,t x x

hu
h b hu

b
                                (6a) 

4

3

0,t x x

gnu u
u uu gh

h

                                  (6b) 

0,z
t

q
w


                                                     (6c) 

0.x zu w                                                      (6d) 

We resume here that the non-hydrostatic model is

 6 6a d , whereas the hydrostatic model can be 

directly obtained by taking 0  q  , therefore the 

governing equation is just  6 , 6 a b . This is in fact 

the Saint-Venant equation  1 , 1 a b  for a 

rectangular channel with arbitrary width  b x . 

Next, we describe the non-hydrostatic staggered 

scheme for solving  6 , 6a d . Here, we adopt the 

scheme developed by Bayu et. al. (2017). In a 

computational domain

  , ,0|            z x d z x L     Ω , the 

horizontal interval  0,  L  is divided into sub 

interval with length / 2x , with /  x L Nx  to 

yield a staggered grid 

1 1 1 1

2 2 2

0 , ,..., , ,...,
x

j
j N

x x x x x L
 

  , with full grids 

, 1,2,...,j xx j N and half grids
1

2

, 0,1,..., x
j

x j N


 . 

On that staggered grid, variable u is calculated at 

the half grids, while variables w, h and q are 

calculated at the full grids. Staggered grid is 

illustrated in Fig. 2. 

 

 
Fig. 2. A staggered grid and arrangement of 

unknowns in a column of mass. 

 

Figure 2 depicts a mass cell centered at  1, jz x , its 

width is x and height is  ,  z h x t  . This cell is 

bounded above by  ,x t , and below by  d x , its 

left and right boundaries are 1

2
j

x


 and 1

2
j

x


, 

respectively. Every time iteration the cell thickness 

z changes, but its width is constant x . 

Below are notations for independent variables with 

indexes 

 , , 1,2,..., ;n
j n jh x t h j Nx                         (7a) 

 , , 1,2,..., ;n
j n jq x t q j Nx                         (7b) 

1 1

2 2

, , 0,1,..., ;n
n

j j
u x t u j Nx

 

 
   
 
 

              (7c) 

1 1
,

2 2

, , , 0,1

1,2,..., ;

n
j n

i i j
w z x t w i

j Nx

 

 
   
 
 



       (7d) 

1 1

2 2

, 0,1,..., .
j j

b x b j Nx
 

 
   
 
 

             (7e) 

Consistent discretization of  6  is as follows 

 

   

1 111
2 22

1

2

1 1

2 2 0,

n n n

n n j jj
j j

n

j

n n

j j

hu b b
h h

t xb

hu hu

x

  



 

 
 
   

 



 


         

(8a) 
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1
1 1 1 n+1

12 2

1 1

1 2 2

4

3

0,

n n

nj j
j j

x

n n

n n j j
j j

j

u u
h h

uu g
t x

gnu u
q q

x
h





 


 





 
 


  



   (8b) 

1
1 1

, ,
2 2 0,

n n

n nj j
s j

w w
q q

t z

 


 
 

                      (8c) 

1 1 1 1
1 1 1 3

, ,
2 2 2 2 0,

n n n n

j j j j
u u w w

x z

   

 
 

 
 

                (8d) 

where 

  1 11

2 22

.
n n n

j jj
hu h u

 
                                       (9) 

Variable 
n

jh does not lie in the half grid so that it is 

denoted as 
1

2

n

j
h



 and the value is approximated by 

first-order upwind method, i.e. 

1

2
1

1 12

2

0,

0.

n n
j

j
n

n nj
j

j

h if u

h
h if u









 



 




                     (10) 

Simpler equations can be obtained by adopting the fact 

that dynamic pressure is zero along the surface qs=0, 

also vertical velocity is zero along the bottom 

boundary w3/2=0. The non-linear advection term in 

(8b) is approximated using the momentum 

conservative scheme, as described in Stelling and 

Duinmeijer (2003). 

Next, the non-hydrostatic staggered scheme above 

is solved using the predictor-corrector procedure. 

First, the predictor step calculates the velocity u
and w without the hydrodynamic pressure q . Then, 

the corrector step updates the predicted value 

velocity u  and w  using the hydrodynamic 

pressure q . Therefore q  should be calculated first. 

So, the computational algorithm of the non-

hydrostatic scheme are as follows  

1. Compute the water depth hn+1 and the 

predicted velocity u* using hydrodynamic model 

 

   

1

1 2
1 1

1 2 2

2

1 1

2 2

.

n

j
n n n n
j j n j j

j

n n

j j

t hu

h h b b
b x

t
hu hu

x




 



 


 
   
   

 
   

 
 

               

(11) 

 1 1
1 1 1

2 2

1 1

2 2
1 4

2 3

,

n n n
j j

j j

n n

j j
n

x
j

j

g t
u u h h

x

g tnu u

t uu

h

  


 

 




   




 

 




                (12) 

2. Compute the predicted hydrodynamic pressure 

q
using formula 

1
1 1 1

,
2 2 2

.n
j j

j j j
q u u h w x

t

    

 

  
     
   
  

     (13) 

3. Compute the hydrodynamic pressure 1nq  with 

successive over relaxation (SOR) iteration 

method using formula 

   1 1
1 1 1

0

1r r r r
j j j j jq q a q q q

a

  
 

      
  

 (14) 

Where 
1

1

n

jh
a

x






and 
1

0 1
2

n
j

n
j

h x
a

x h





 
  
 
 

. In SOR, 

starting with 0 0jq  as the initial guess, we 

compute 1r

jq   iteratively for 0,1,2,....r  Here 

we used 1.4 . The above iteration is 

repeated until the solution converged, i.e. 
1r r

j jq q     where   is the tolerance, here 

taken to be 510 . The SOR iteration results are 
1n

jq 
. 

4. Using computed 
1n

jq 
to correct the velocities 

1nu 
 and 

1nw 
using formula 

 1 1 1
1 1 1

2 2

1
1 n

1 1 1, ,
2 2

,

2

n n n
j j

j j

n
jn

nj j
j

t
u u q q

x

t q
w w

h





   


 







   





 



           (15) 

Note that the hydrostatic model consist only two 

dependent variables  ,h x t and  ,u x t , and hence 

its discrete formulation is just  8 , 8 a b  with the 

dynamic pressure 
n

jq  is taken to be zero. 

3. VALIDATION OF THE 

HYDROSTATIC SCHEME 

In this section we will conduct several 

simulations to test the hydrostatic staggered grid 

scheme. The first and foremost test is, ensuring 

that our numerical scheme can capture the 

accurate bore speed. For that purpose we first 

recall the analytic velocity formula for a bore in a 
rectangular canal.  
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Fig. 3. Sketch and notations of a bore with 

propagation speed c. 

 

Consider a bore that propagates to the right with 

velocity c , see Fig. 3. In that figure 
iu denotes the 

horizontal velocity of fluid particles and 
ih  the 

water depth, with index 2  i  and 1  i   denotes 

the location at front and behind the tidal bore, 

respectively. The relation between flow properties 

in front of and behind the tidal bore front can be 

obtained from mass conservation and momentum 
balance, which is as follows 

   1 1 2 2,u c h u c h                             (16a) 

   
2 22 2

1 1 1 2 2 2

1 1
.

2 2
gh u c h gh u c h     (16b) 

where c is the bore velocity. If we eliminate 

2u c  from  16a and  16b  and after some 

algebraic manipulation, we obtain a quadratic 

equation for the ratio 2

1

h

h
. One root is negative, and 

the other root is positive, which leads to one valid 

solution 

22

1

1
1 8 1,

2

h
Fr

h
                                      (17) 

With 

1

1

.
u c

Fr
gh


                                                 (18) 

If we assume 2 1h h , then 2 15

8
Fr  . This is to 

confirm that a bore will only exist if the flow is 

super critical. 

Further, the bore velocity c can be obtained from 

(17) by substituting the Froude number formula in 

the case of 
1 0u  or

1Fr c gh . After some 

manipulation we obtained the bore velocity formula 

 2 2
1 2

1

.
2

g h
c h h

h
                                        (19) 

This bore velocity depends on water depths behind 

and in front of the tidal bore 2h  and 1h , 

respectively.  

The first three simulations in this section are 

conducted to test the validity of the hydrostatic 

scheme in simulating a bore. The first two 

simulations are for homogeneous canals, whereas 

the third simulation uses the non-homogeneous 

canal. 

Test case 1: A bore induces by a discontinuous 

initial surface 

The first simulation uses the initial free surface of a 

piece-wise constant function 

   
10, 50

,0 , ,0 0.
5, 50

x
h x u x

x


 


 

Computations were conducted in a computational 

domain 0 200      x L   , whereas the left and 

right boundaries are taken to be hard wall 

boundaries    0, 0, , 0     u t u L t  . Right after 

the simulation started, the free surface fell and 

developed a bore that propagate with a constant 

speed. Surface profile at time 
1 10t  and 

2 15t 

together with the initial surface is plotted on Fig. 4. 

From the numerical results at time 10t  the bore is 

located at 142.5, and when 15t  it has moved to 

188.7. The numerical bore velocity is obtained from 

the difference between bore positions divided by the 

time difference, and we obtained the numerical bore 

velocity is 9.24numc  , to be compared with the 

analytic bore velocity canal = 9.35. The Froude 

number of this simulation is 1.34Fr  > . 

 

 
Fig. 4. Snapshots surface profile in test case 1 at 

subsequent times 0  t  s (dashed black line), 

10  t  s (dashed blue line) and 15  t  s (solid 

red line). The initial discontinuous surface 

develop into a bore that propagates with 

constant velocity numc . 

 

Test case 2: A bore induces by left current influx In 

the second simulation, tidal bore is generated by 

imposing a left horizontal velocity  0, 3u t   into 

the steady water depth   7.,0 37h x   . This left 

influx gave rise to water height up to 
2 6.53 h   and 

developed a bore. This bore propagates into the 

domain with constant speed. Simulation results at time 

1 10 t  and 
2 15 t  are plotted in Fig. 7. By 

measuring the difference between bore positions 

within 5 sec time, the numerical bore velocity is 1 

obtained, i.e. 9.34numc   . This value is to be compare 

with the analytical bore velocity 9.45analc   . In this 

simulation we also measure the Froude number, and 

that is >1.35Fr   . 

Test case 3: A bore in a non-homogeneous canal 
In the third simulation, the same setting like the 

previous simulation is used. The difference is only 

here we use a non-homogeneous canal. The canal 

length is 200 m, the width of the upstream part is 20 

m and it decreases linearly up to 5 m in the down-
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stream part. The same left influx  0, 3u t   was 

imposed to the left boundary, which results in an 

increase of water level. This increase in water level 

is enforced further by the decrease of canal width. 

The numerical bore velocity at time t = 15 is cnum 

= 10.43. In this simulation we also measure that the 
Froude number is Fr = 1.39. 

 

 
Fig. 5. Snapshots of surface profile in test case 2 

plotted at subsequent times 10  t  s (dashed 

blue line) and 15  t  s (solid red line). A bore is 

developed due to left current influx. 
 

 
Fig. 6. Snapshots of surface profile in testcase 3 

at subsequent times 10  t  s (dashed blue line) 

and 15  t  s (solid red line). A bore which is 

developed due to left current influx, propagates 

into a narrowing canal. 
 

Table 1 Water height 𝒉𝟏, 𝒉𝟐 and bore positions 

at two different times 𝒙(𝒕𝟏) and 𝒙(𝒕𝟐) measured 

in all three test cases, to determine the bore 

velocity 𝒄𝒏𝒖𝒎, to be compared with the analytical 

prediction 𝒄𝒂𝒏𝒂𝒍. 
Case 𝒉𝟏 𝒉𝟐 𝒙(𝒕𝟏) 𝒙(𝒕𝟐) 𝒄𝒏𝒖𝒎 𝒄𝒂𝒏𝒂𝒍 𝐹𝑟 

1 5 7.27 142.5 188.7 9.24 9.35 1.34 

2 5 7.37 93.4 140.1 9.34 9.45 1.35 

3 5 8.33 95.6 145.8 10.43  1.39 

 
Results of the three simulations above are resumed 

in Tabel 1. All simulations are supercritical with 

Froude number 1.34, 1.35, and 1.39 respectively. It 

is shown in all cases above, that our numerical 

simulation can produce a bore front that propagate 

with velocity numc , that are in good agreement with 

the analytical bore velocity analc . 

4. NUMERICAL SIMULATION OF 

THE NON-HYDROSTATIC MODEL 

In this section the non-hydrostatic scheme will be 

used. By performing simulation we will show the 

occurrence of tidal bore at Kampar river as a result 

of an interaction between incoming tidal flows with 

the river current. By using the non-hydrostatic 

scheme we show the development of undulations 

that follow the tidal bore. 

4.1   A Bore with Undulation 

In this section, we adopt the second test case setting 

but now using but now using the non-hydrostatic 

scheme. We observe the same tidal bore propagate 

with the same speed, but now it is accompanied by 

undulations. The numerical results at time 10  t 
the bore is located at 73.5, and when t = 15, it has 

moved to 122. And just like the previous, we 

obtained the bore propagation velocity

8.92 /  numc m sec , which is to be compared with 

the analytical bore velocity 9.04 /  analc m sec . In 

this simulation we also measure the Froude number, 

which is 1.29  Fr  , see Fig. 7. 

 

 
Fig. 7. Snapshots of surface profile in test case 2 

at subsequent times 10  t  s (dashed blue line) 

and 15  t  s (solid red line). Using the non-

hydrostatic scheme, the propagating bore is now 

followed with an undulation. 

 

4.2  Numerical Simulation of Tidal Bono 

In this section, our numerical scheme is used to 

simulate the appearance of Bono wave due to tidal 

flow. We use Kampar River topography depicted in 

Fig. 14, as in Rahmawan, et. al. (2016). In that 

figure the computational domain is indicated as the 

red solid line. This line also represent the river 

stream. 

 

 
Fig. 8. Kampar River with three sites of field 

measurements; site A: semi-diurnal tides, site B 

and C: Bono waves. The black line indicates the 

computational domain. 

 

The Global Mapper 17 application was used to 

construct Kampar River topography, by first 

recorded the river depth along this red line. Then, 

the river widths were obtained of direct 

measurement from Google Earth photo. Finally, the 

constructed three-dimensional bathymetry of 

Kampar River is depicted in Fig. 9. 
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Fig. 9. Model bathymetry of Kampar River. 

 

Bono waves in Kampar River were generated by 

tidal stream entering the river mouth and 

propagating upstream. This tidal stream is a semi 

diurnal tides with period 12 hour 25 minutes 

(Yulistiyanto, 2009). The researchers team from 

RICRV conducted field measurement at several 

places along the Kampar River. Stream flow was 

measured using Acoustic Doppler Current Profiler, 

whereas tidal wave height was measured using Tide 

Master. Figure 10 displays a tidal wave height 

measured at the point A for the period April - May 

2016, as recorded previously in Rahmawan et.al. 

(2016). Tidal wave height as shown in Fig. 10 

(inset) was used as a boundary condition to the 

initial still water level  ,0 0  h x  ,  ,0 0  u x 

,  ,0 0  w x  . The height of this tidal wave ranges 

from 1-5 m at night and 1.5-4 m in the afternoon. 

Parameters used in this computation are
29.8 /   g m s , 31024 /   kg m  , and the 

Manning friction coefficient is taken to be n=0.001, 

with step size 10   x m  , 0.5   t s  . This tidal 

flow induces a Bono wave that travel further into 

the domain. At the point C, the wave height h 

wasrecorded, and the result is compared with 

measurement. 

 

 
Fig. 10. Water height of a semi diurnal tides with 

period 12 hour 25 minutes, as measured at point 

A. High tide ranges between 1−5 meters, and low 

tide ranges between 1.5 − 4 meters. (Inset) Tidal 

wave data used in our simulation. 

 

As shown in Fig. 11 that evening tides produce 

higher Bono waves, which is about 4 m, whereas 

daytime the day the height of Bono wave is about 

3.4 m. Figure 11 shows that when compared with 

the measurement, our simulation can predict the 

Bono wave quite well. 

Further comparison is conducted for horizontal 

velocity u which is recorded at point C , and the 

result is compared with measurement. The result as 

depicted in Fig. 12 shows that our simulation is 

much higher than measurement. The differences are 

quite striking between the current measurement and 

simulation results can be caused by the limitations 

of measurement versus numerical models. River 

currents were measured using Acoustic Doppler 

Current Profiler which are located near the banks of 

the river, while our simulation uses a model that 

assumes homogeneity in the direction of the river 

cross section. Moreover, for efficiency reasons our 

model applies hydrodynamic pressure 

approximation using one layer only, which is also 

an approximation. 
 

 
Fig. 11. Plots of water height at point C, obtained 

from simulation and measurement. 

 

 
Fig. 12. Plots of horizontal velocities u at point C, 

obtained from simulation and measurement. 

 

4.3   The Lost Bore Scenario 

Here we conduct a simulation which is similar with 

the test case 3 in Section 3 but instead of narrowing 

canal, we use a widening canal with length 200 m, 

and width 5 m (upstream) and 20 m (downstream). 

The left boundary  0, 2 /   u t m s is imposed 

into a fixed water depth  ,0 5   h x m . As 

expected, this left influx induces a tidal wave that 

propagate downstream. But as shown in Fig. 13, the 

amplitude of this tidal wave decreases significantly 

as time progresses. 

The second scenario is enforcing a subcritical flow 

simulation. This is done by giving somewhat low 

left influx  0, 0.5  u t  into somewhat large 

water depth  ,0 10  h x  in a rectangular canal. 

Under this setting, the left influx did not produce a 

noticeable bore wave, and tidal bore does not occur. 
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In this simulation
2 1 10  h h  , and the Froude 

number computed from (18) is 1.04  Fr  , which 

is less than 15/8, and hence, as predicted from (17) 
the bore wave does not appear. 

 

 
Fig. 13. Surface profile in the simulation of lost 

Bono scenario 1. It is shown that the bore height 

decreases as it propagates further downstream. 
 

5. CONCLUSIONS 

The staggered grid scheme of the Saint Venant 

equations was shown to be suitable and accurate for 

simulating various tidal bore scenarios, subsequently 

by incorporating the hydrodynamic pressure, an 

undular bore that follows the shock front emanates. By 

adopting tidal current data obtained from 

measurement, the formation of tidal bore Bono was 

simulated. The comparison between the numerical 

surface and the surface measurement at Tanjung 

Tersendu-sendu has shown a good agreement. 

Through a good understanding of the physical 

mechanisms of a tidal bore, we hope that the tidal bore 
Bono in Kampar River can be maintained properly. 
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